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1. Introduction
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● We aimed to understand biological motor control through computational modeling.

● Target motor task: Handwriting
○ Implemented by the essential components of sensorimotor integration
○ Handy collection of data by digital tablets

● Top-down approach to handwriting modeling
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Fig. 2: Levels of analysis behavior and brain [Arbib, 2002].Fig. 1: The roles of internal models in sensorimotor control [McNamee & Wolpert, 2019].
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1. Introduction
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● State-of-the-art ANN models for handwriting generation [Graves, 2013; Ha & Eck, 2018]
○ Generated realistically-shaped handwriting
○ Overlooked the realistic behavioral dynamics of handwriting

● Therefore, we contrived a framework to develop neural networks that generate handwriting 
within human behavioral spatiotemporal scales.
○ This framework uses metrics measuring behavioral difference from human handwriting.

Fig. 3: Handwriting generation by recurrent neural networks [Graves, 2013]. Fig. 4: Complex handwriting generation by 
recurrent neural networks [Ha & Eck, 2018].
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2. Methods

4

Data collection

● Wacom tablet (PTH-460)
● Min resolution: 1px, 1ms
● 10 digits
● Whole set = 1,000/digit 

(from one person)
● Sampling rate: 20ms
● Image size: 256x256
● Rescale pixel space by STD:

dx  /= STD(dx), dy  /= STD(dy)

Evaluation

● Strategy: Using statistical difference from human 
handwriting data wrt the following variables 

Spatiotemporal variables
● Duration
● Trajectory length
● Temporal movement
● Width & height

Nearest centroid classification accuracy
● Dynamic time warping (DTW) is a method to align 

different sequences and compute their difference.
● Soft-DTW [Cuturi & Blondel, 2017] is used b/c it 

yields more realistic motor programs than DTW.
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Fig. 6: Our handwriting neural network.
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Fig. 7: A workflow of nearest centroid classification for handwriting.
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2. Methods | Soft-DTW nearest centroid classifier
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Fig. 8: The workflow of soft-DTW near centroid classification 
for handwriting. Five-dimensional sequences (dx,dy,x,y,h)t 
and tslearn package are used. 
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3. Framework
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Fig.9: Our framework to develop handwriting neural networks for biological investigation. The suggested methods are combined to the framework that 
helps finding a best checkpoint, which generates biological plausible handwriting behavior.
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Thick Blue 
= Barycenter 
by soft-DTW

4. Results | 4.1. Averaged human motor programs
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4. Results | 4.1. Averaged human motor programs
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4. Results | 4.2. Learning curves and model selection
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Digit 0 1 2 3 4 5 6 7 8 9 Total
Human Accuracy 1 1 1 .98 .99 1 1 1 1 1 .997

 Max Generation Accuracy 1 .99 1 .98 .93 1 1 .99 1 1 .990
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4. Results | 4.2. Learning curves and model selection
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Mean absolute error (MAE) =

● For model at each epoch, check MAEs are acceptable. All MAEs are acceptable.

Mann-Whitney U test: Null hypothesis = “Two distributions are identical.”

● Find checkpoints where all p-values > 0.5. ⇒ Epochs: 99, 125, 187, 200, 225.

max(MAE)=0.51=10.2ms

[acceptable]

max(MAE)=2.9 pixels

[acceptable]

max(MAE)=0.18 pixels

[acceptable]

max(MAE)=1.4 pixels

[acceptable]

max(MAE)=1.9 pixels

[acceptable]
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4. Results | 4.2. Learning curves and model selection
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● Pick the checkpoint that results in the highest classification performance.
○ The checkpoint at epoch 225

Accuracy for each digit set MAE metrics

Epoch 0 1 2 3 4 5 6 7 8 9 Total Dur Tra Tem Wid Hei

Human - 1. 1. 1. .98 .99 1. 1. 1. 1. 1. .997 - - - - -

Generation

99 1. .99 1. .98 .88 .99 .99 .98 .98 1 .980 .32 2.2 .11 1.2 1.9

125 1. 1. 1. 1. .92 1. .97 .98 1. 1. .987 .46 2.8 .18 1.2 1.6

187 1. 1. 1. .98 .88 1. .98 .99 1. 1. .983 .38 1.5 .14 1.4 1.7

200 1. .99 1. .96 .88 .99 .98 .98 .98 1. .978 .42 2.0 .10 1.0 1.7

225 1. .99 1. .99 .93 .99 .98 .98 1. 1. .988 .51 2.9 .15 1.1 1.7
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4. Results | 4.3. Generated sequences
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4. Results | 4.3. Generated sequences
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Visit this demo page: 
https://sungjae-cho.github.io/nmc2022-handwriting
● More generated handwritings
● 128 generation images per digit
● These samples are not cherry-picked.

https://sungjae-cho.github.io/nmc2022-handwriting
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Summary
● We developed a framework to mimic handwriting with realistic behavioral dynamics.
● The framework includes

1. Data collection: Dynamic handwriting strokes
2. Neural network:  RNN composed of LSTM and Gaussian mixture
3. Evaluation: Spatiotemporal behavioral metrics & soft-DTW nearest centroid classifier

● The framework yielded a neural network generating the handwriting motor programs for 10 digits within 
human behavioral spatiotemporal scales.

5. Conclusion
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